Donna Kent Structural Option Building: Vickroy Hall Location: Duquesne University Pittsburgh, PA 15282 Date: October 27, 2006 Title of Report: Technical Report 2 Faculty Consultant: Dr. Boothby

Executive Summary

The purpose of this report is to analyze, design, and evaluate four alternative floor systems in the building. The report will give preliminary sizes of members, depths, and other pertinent information about each system. Figures from Handbooks are present as well as hand calculations and tables.

The four alternative floor systems that I chose were Hollow Core Planking on Steel Supports, One-Way Concrete Joist System, Two-Way Flat Plate System, and finally Hollow Core Planking on Concrete Beams and Masonry Bearing Walls.

Through calculations and tables, I have decided that all systems, including the original system require further investigation. The only system that I am remotely unsure about is the Hollow Core on Masonry Bearing Walls. It is difficult to tell if placing bearing walls in place of the columns will result in a change in the architecture or physical spaces in the building. Therefore, I will still investigate further into the system.

Table of Contents

1. Introduction	.1
2. The Current System	.1
2.1 Current System in Drawings	1
2.2 Analysis	
2.3 Evaluation of the System	4
3. Alternative System 1: Hollow Core Planking on Steel Supports	4
3.1 The System	
3.2 Analysis	4
3.3 Evaluation of the System	
4. Alternative System 2: One Way Concrete Joist System with Concrete Beams	7
4.1 The System	7
4.2 Analysis	7
4.3 Evaluation of the System	.11
5. Alternative System 3: Two Way Flat Plate	
5.1 The System	11
5.2 Analysis	
5.3 Evaluation of the System	.13
6. Alternative System 4: Hollow Core Planking on Steel Supports	.13
6.1 The System	13
6.2 Analysis	13
6.3 Evaluation of the System	.14
7. Overall Evaluation	.16

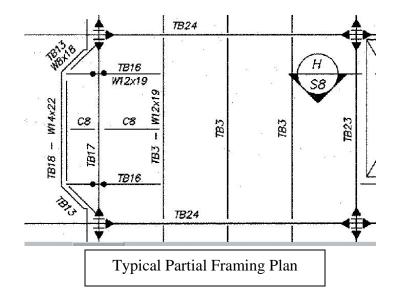
1. Introduction

Completed in 1997, standing eight stories above ground, and encompassing 77,000 square feet within its walls, Vickroy Hall provides Living and Learning areas

for up to 280 upper class students of Duquesne University. The living quarters are suites with two double rooms and an attached private bathroom. The learning quarters are multiple meeting rooms complete with tables and lounge chairs.

The building sports multiple protrusions to give it interesting dimension when compared to the buildings around it. There are also two story columns on the exterior of the building to give it a 'floating' look and add to its prestigious façade. The first two floors are atypical due to the columns and the need for a lobby, large meeting rooms, and offices. However, the floors above take on a more typical structure.

This report is designed to take a closer look at the typical floor structure of Vickroy Hall and

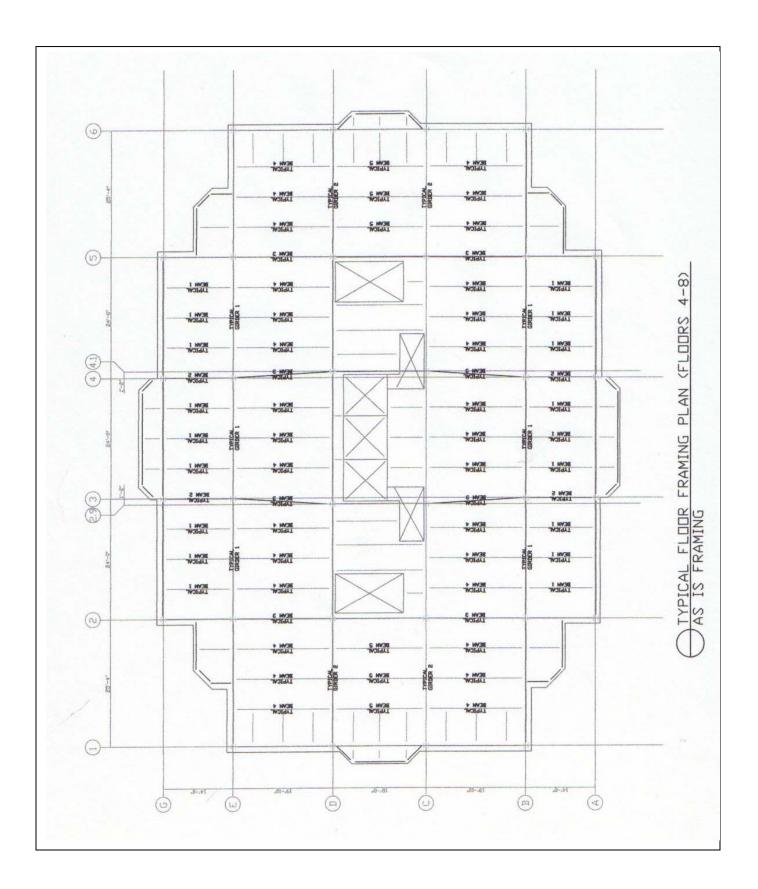


undertake the task of designing alternative systems that could have worked in the building. It will evaluate four alternative floor systems and compare them to the original system.

2. The Current System

2.1 Current System in Drawings

The main structural system consists of structural steel members including Wshapes and C-channels. The W-shapes are the framing for typical members and the Cchannels provide support for the cantilevers and other protrusions. They are usually oriented perpendicular to the other framing members. The main members extending from column to column are detailed as moment connections. These moment connections are either classified as a wind moment connections or a moment resisting connections. The typical floor plan generally calls for W12 to W16's. (See partial framing plan below or Figure 1 in the Appendix which illustrates the typical full original framing plan.)


The floor system is a non-composite metal and concrete deck. On a typical floor, the deck is $2^{"} - 20$ gage corrugation with 3-1/4" light weight concrete and $6x6 - W2.9 \times W 2.9$ welded wire fabric. The deck was to be welded to the supporting structural member. (See photo below)

Typical Floor System: Shows corrugated metal deck supported by steel framing

2.2 Analysis

My analysis used the typical floor system to design the typical members of the system. I did not take into account wind or seismic forces, but designed strictly for gravity loads. The moment connections, as they exist, were taken into account as fixed-fixed beams when designing. All other connections were assumed to be simply supported. My loads were revised from Technical Assignment 1 to reflect IBC 2003 instead of BOCA 1993. With this revision, some of my members were the same as the original, but most differed. (See Framing Plan) Calculations for the current system can be found in the Appendix as Figures 6-9. The typical member sizes of my analysis versus that of the original are shown in the table below.

Typical Beam Name (Current/Analyzed)	Current Size	Analyzed Size
Typical Beam 4/Typical Beam 1	W 10x15	W 10x15
Typical Beam 5/Typical Beam 2	W 18x35	W 10x15
Typical Beam 2/Typical Beam 3	W 21x44	W 10x15
Typical Beam 1/ Typical Beam 4	W 14x22	W 12x22
Typical Beam 3/Typical Beam 5	W 12x19	W 12x19
Typical Beam 14/Typical Girder 1	W 21x62	W 18x71
Typical Beam 24/Typical Girder 2	W 21x62	W 21x73

2.3 Evaluation of the System

This evaluation will highlight the pros and cons of the current system.

Current System Pros

- Has withstood the test of time
- Steel is constructed relatively fast
- Building did not show stress cracking in masonry facade
- Relatively light system
- Plenty of plenum space between floors for MEP

Current System Cons

- o Moment Frames are expensive
- Moment Frames take longer constructability time
- No shear walls moment connections take all of the wind and seismic loads

3. Alternative System 1: Hollow Core Planking on Steel Supports

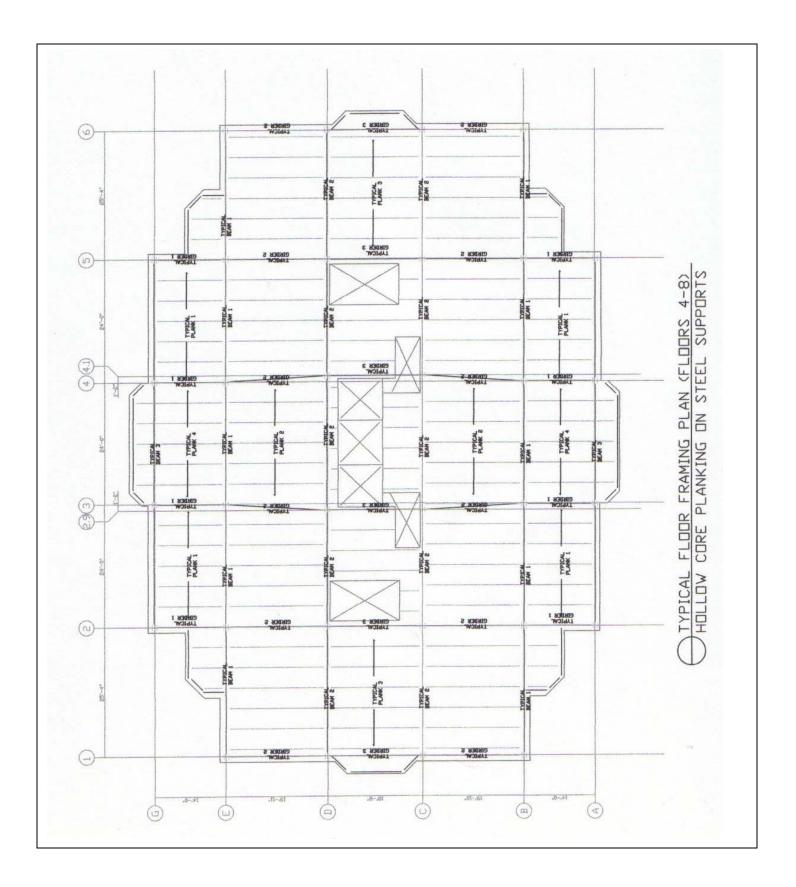
3.1 The System

Hollow core planking is a type of precast concrete system that can be constructed a multitude of ways. The planks are cast in long lengths and cut to size to accommodate the project. The hollow cores can be filled with grout for added strength if need be. A topping slab may also be added for either structural purposes or strictly leveling. For this system, the precast will be supported by structural steel members. The system I analyzed has a two-inch topping for both structural integrity and to make sure the floor is level. The Nitterhouse Concrete Products website provided free specifications and details for their typical planks and coinciding connections.

3.2 Analysis

From the Nitterhouse Concrete Products site, I chose the J952 planking system. The full PDF of the specifications can be found in the Appendix as Figure 2. The planks are four stranded 8" x 4' wide members. The weight of each plank is 82.5 psf or 330 plf. The strength of the member is 3000 psi when it arrives on site, and the 28-day strength is 5000 psi. The allowable loads are located on the bottom of the PDF from Nitterhouse Concrete Products.

Following the original floor plan, the columns were kept the same and the orientation of the planks followed that of the original beams for simplicity at the cantilevered and protruding sections. There were four typical planks. The planks were assumed to be simply supported with minor tack welds to the supporting members. The sections where planks were not designed for were atypical, such as around the core of the building, which houses the elevator shafts and stairwells. Such analysis was beyond the scope of this report. The typical supporting members were also designed for. However, they were not designed as fixed-fixed members as in the original system, but simply supported.


Other Assumptions:

- Deflection of the planks is calculated into the allowable loads given in the Nitterhouse Concrete Products specifications
- Since there is topping on the planks, the planks will not serve as point loads on the supporting members, but as a distributed load along the length of the member.
- Supporting members are unbraced except for necessary tack welds along the length as defined by the precastor
- o Only gravity was accounted for in the floor system

The typical floor plan of this system is shown below. The beams and girders are labeled as typical member (#). The summary for each member is shown in the table below. Deflection controlled for most members and the most economical size was not chosen. The member with the closest value to the controlling property was chosen.

Typical Member	Typical Member Size
Typical Beam 1	W16x89
Typical Beam 2	W21x83
Typical Beam 3	W10x22
Typical Girder 1	W14x38
Typical Girder 2	W16x77
Typical Girder 3	W12x106

Further calculations may be found in the Appendix as Figures 10-15.

3.3 Evaluation of the System

This evaluation will highlight the pros and cons of the precast hollow core plank on structural steel members system.

H	<u>ollow Core System Pros</u>	Hollow Core System Cons
0	Durable system ¹	• Cannot change column spacing due to façade
0	Inherently Fire Resistant ¹	\circ Much cutting will be needed to size to the
		original column spacing as planks come in 4'
		sections
0	Fast Installation ¹	• While spanning in shorter direction
0	Noise Attenuation ¹	• Easier to construct but more pieces
0	Less expensive	o Cantilevered sections
		o Larger supporting member sizes

4. Alternate System 2: One Way Concrete Joist System with Concrete Beams

4.1 The System

One way concrete joist systems can basically take a bay that can be a two way system and force it to be a one way system. The joist system is a 'monolithic combination of regularly spaced joists (ribs) and a thin slab of concrete cast in place to form an integral unit with the supporting beams, columns, or walls.² The system uses forms repeatedly to construct the floor system. Many sizes and depths are available. The system was 'developed to save dead weight and reinforcement.²

4.2 Analysis

For the analysis, I chose a form that would require the least amount of atypical formwork. Vickroy Hall has many unusual spans that do not necessarily divide easily into the forms that are generally used for the concrete joist system. The form that was analyzed was thirty inches plus another six inches for the rib. The smallest depth was chosen to allow for plenum space and to keep the typical floor to ceiling height. This height consists of a ten inch deep rib with a three inch top slab for a total depth of thirteen inches. To use the Joist tables, the unit weight per length must be known. In this case, it was 138 psf, which was determined from the current system floor load.

Other Assumptions:

- At large openings:
 - Will need header joists and more reinforcing
- Deflection: all load capacities have been investigated for deflection by CRSI
- Unequal Continuous Spans:
 - Cause differences in moments
 - o Limitations
 - Live Load <= 3 Dead Load

- Check 40< 3(60) •
- Larger span to adjacent span shall not be greater than 20% the length of the shorter span
 - Check span: 14' to 19'-10": 42% greater, therefore, • must span in the long direction (lettered column lines)

Lay-ers TOP

(2)

2#8

2#10 2#10 5#8

5#10 5.4*

- Material Strengths 0
 - o f'c = 4000 psi
 - Normal weight concrete
 - o fy = 60000 psi
- Loadings 0
- CRSI Factors loads such that: 1.4D + 1.7L0
 - This will be conservative to IBC 2003

f'_c f_y			00 ps 00 ps			J	E	-BA	SI	D BE	AMS S	5,				b-	f _c f _y		4,00		
ST	M		BAR	S ⁽¹⁾			1		-	1000	1		TOTAL	. CA	PACITY	U	ST	EM		BAR	em
h	ь	BOT	том	Lay- ers	TOP		SPAN	i, l _n =	12 f		-	SPAN	$l, l_n =$	14 8	1		01	LIM		DAN	L
in.	in.	la+	0.875	(2)	1000	LOAD (4)	STIR, TIES	φT _n n-	Al sq.	STEEL	LOAD (4)	STIR. TIES	фТ _в п-	Al	STEEL WGT	LC	h	b	BOT	TOM	Lay ers
-	-	12 in 2# 6	14 6	1	42.6	4.4	(5) 103C	kips 6	in,	lb. 166	k/tt 3.2	(5)	kips 6	sq in	lb. 187		in.	in.	ln + 12 in.	0.875 Co	(2)
		28 6	2≢6	1	48.7	5.7	143C 123C 143C	25 6 25	1.0	218 215 255	42	173C 133C 173C	25	1.0	256		_		2# 6	1# 6	1
	24	4/ 6	34 6 94 4	1	489	9.5	143C 144C	6 25	1.0	336 474	7.0	173C 163C 174C	25 6 25	1.0	299 383 556 482	5			2#7	1#.7	
	_	108-4	38.4	2	4#10	10.6	1838 1848	6 25	1.0	426 603	7.8	2038 2148	6 25	1.0	482 694	6		247	2#8	1#8	1
		2#.6	2#-6	1	54.6	5.9	N/A 243A	11 43	1.5	140 367	4.3	N/A 283A	10 42	1.5	160 425	3		1	2# 9	1# 9	
12.5	36	5# 6	5# 6	1	5#8	8.6	123C 243A	11 43	1.5	312 460	6.3	133C 283A	10 42	1.5	352 530	4		-	29.6	2# 6	
e.d	-00	7#6	67.6		5#10 5#11	13.7 17.2	143C 144C 144C	11 43 11	1.5	482 650 681	10.1 12.8	163C 174C 174C	10 42 10	1.5	548 760 788	7			28 6	2# 6	1
	-	34.6	34.6	-	267	0.7	244A	43	1.5	947		284A	42	1.5	1089		12.5	36	2# 9	2#9	1

JOIST-BAND BEAMS. INTERIOR SPANS

= 12 ft

AŁ

1,1

1.0

1,6

1.6

1.6

(4) k/R TIES (5)

14.2

5.6

8.6

10.2

6.3

7.7

12.0

14.6

123C 173C 143C 174C 153C 174C

N/A 283A 123C 283A 143C 174C 154C

Na Na Na

114114143

SPAN, I.

113C 1440 133C 1440 133C 1440

103C 243A 113C 243A 133C 144C 134C 244A

26

(4) k/ft

416

4#7 7.6

42.9 11.6

4#10 13.8

5# 7 8.5

58.8 10,5

5810 16.3

5411 19.9

		2# 9	1#9	1	4#10	4.8*	233 303		6 24	1.0	553 655	3.9*	
		29.6	2#.6	1	5#-7	3.1	N/ 403		10 41	1.5	244 623	2.5	
		2#7	247		5# 8	4.1		A	10 41	1.5	325 704	3.4	
5	36	2#9	2# 9	1	5#10	6.4*			10	1.0	678	5.3*	
f.	= 6	0 00	0 0	ai is			E	ND	SI	PAN	S		
	TEM	10,00	BAR						-		1.0.1	12.5	2
ST	EM			IS ⁽¹⁾	TOP		SPAN	. In -	20 1			SPA	2
			BAR	IS ⁽¹⁾	тор	LOAD (4) k/ti	SPAN STIR TIES (5)	, ℓ _n = ΦT _n Π- kips	20 f Al \$4. in,	STEEL WGT Ib.	L0AD (4) k/tt	SPA STIR TIES (5)	
ST h	rem b	BOT	BAR TOM	Lay- ers	TOP 4# 6	(4)	STIR. TIES (5) 093C	ΦT _n R- kips	Al sq. in.	STEEL WGT Ib. 223	(4)	STIR TIES (5) 0730	The second second
ST h	rem b	BOT <i>l_n</i> + 12 in.	BAR TOM 0.875 	Lay- ers (2)		(4) k)街	STIR TIES (5) 093C 243C 163C	фТ _п It- kips 6 24 6	Al ¹ 54 in.	STEEL WGT Ib. 223 357 364	(4) k/tt	STIR TIES (5) 0730 2630 1630	and a state of the
ST h	rem b	BOT <i>l</i> _n + 12 in. 2# 6	BAR TOM 0.875 	Lay- ers (2)	4# 6	(4) k/tt 1,5	STIR TIES (5) 093C 243C 163C 243C 253B	фТ _п П- kips 6 24 6 24 6	Al 54 10 1.0	STEEL WGT Ib. 223 357 364 458 592	(4) k/tt	STIR TIES (5) 0730 2630 1630 2630 2738	and a state of the second second
ST h	b in.	BOT <i>ℓ_n</i> + 12 in, 2# 6 2# 8	BAR TOM 0.875 ℓ _n 1# 6 1# 8	Lay- ers (2)	4# 6 4# 7	(4) k/ft 1.6 2.5*	STIR TIES (5) 093C 243C 163C 243C	фТ, п- kips 6 24 6 24	Al ¹ 54 in.	STEEL WGT Ib. 223 357 364 458	(4) k/t 1.3 2.0*	STIR TIES (5) 0730 2630 1630 2630	
ST h	b in.	BOT <i>ℓ_n</i> + 12 in, 2# 6 2# 8 2#10	BAR TOM 0.875 <u>fn</u> 1# 6 1# 8 1#10	Lay- ers (2)	4# 6 4# 7 4# 9	(4) k/ti 2.5* 3.8*	STIR TIES (5) 093C 243C 243C 253B 303B 263B	фТ _л п- кірs 24 6 24 6 24 6 24 6	Al sq. in 1.0 1.0 1.0	STEEL WGT Ib. 223 357 364 458 592 682 652	(4) k/t 1.3 2.0* 3.1X	STIR TIES (5) 0730 2630 1630 2630 2738 3338 2738	I TO THE AND

N/A 403A 253B 403A

1.5

(4) k/ft TIES

4# 6 2.1

4#7 2.7

JOIST-BAND BEAMS,

INTERIOR SPANS

AC sq. φī,

1.0

STEEL WGT Ib.

SPA

STI TIE (5 LOAD

(4) k/ft

1.7

23

3.2*

SPAN, $l_n = 20$ ft

(5)

243C 173C 3.9 4# 9

1

TOTAL CAPACITY

54. in, WGT Ib

1.0

1.0

1.0

1.5

1.5

 $f_{c}' = 4,000 \text{ psi}$

 $f_y = 60,000 \text{ psi}$

BARS

BOTTOM Lay-ers TOP

0.875 (2)

106

3/6 3/6

3# 6 2# 6

44.6 37.6

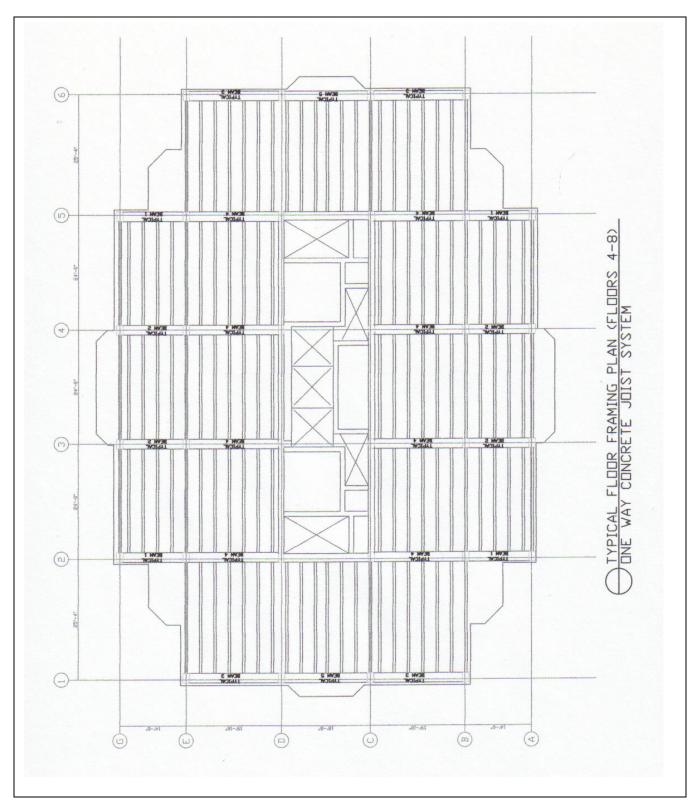
24.6 24.6

47.6 46.6

57.6 54 8

STEM

in -


b

N/A 443A 263B 443A

4.5*

SINGLE	E SPAN	. 2.							5	$I_{y} = 60$	60,000 psi
				10" Dee	10" Deep Rib + 3.	3.0" Top Slab	ab = 13.0"	= 13.0" Total Depth	th		
BOTTOM	# 4	# 4	# 2			9 #	1 #			# 8	Deflec-
Steel (psf)				# 0.	# 6 1.00	# 7 1.18	# 7 1.36	# 8	# 8 1 78		Coeff.
CLEAR SPAN			FACT	FORED US	FACTORED USABLE SUPERIMPOSED LOAD (PSF)	PERIMPO	SED LOAD	(PSF)		10.4	(3)
16'-0"	133	191	249	316	385	465*	482*				1 214
-	0	0	0	0	0	0	548				
17'-0"	108	159	211	270	331	402	445*				1.547
18'-0"	87	133	179	232	286	350	4/6				1 0.4.4
	0	0	0	0	0	0	415				1.944
19'-0"	69	110	152	199	248	305	364				2.414
"U-10C	0 4	0 6	0	0	0	0	0 000				
2	50	0	0	0	0	0	320				2.964
21'-0"	41	75	109	148	187	234	282				3.602
10 100	0	0	0	0	0	0	0				
.022		09	91	127	163	206	249	299	340*		4.339
23'-0"		48 0	0	0	0	0	0	0	344*		-
		0	0	30	0	0	0	007	+cnc		5.183
24'-0"			63	93	123	159	196	237	269+		6.145
10 100			0	0	0	0	0	0	0		
-0-07			5	6/	107	140	174	212	237+	260+	7.235
26'-0"			41	99	60	123	154	180	011+	0 0	0 464
			0	0	0	0	0	30	0	107	0.404
27'-0"				55	79	108	137	169	188+	206+	9.844
10 100				0	0 0	0	0	0	0	0	
0-07				40	800	94	121	152	169+	185+	11.385
29'-0"				>	57	82	107	135	152+	0 166+	13 101
					0	0	0	0	0	0	5
(1) For gr (2) First I (3) Comp	ross sect oad is fo	ion propert r standar	For gross section properties, see Table 8.1, First load is for standard square joist ends; second load is for special tapered joist ends. Computation of deflection is not required above horizonal line (thickness $\geq \ell_0/1(5)$.	e Table 8- joist end required	-1. Is; secont I above h	d load is orizonal l	for speci ine (thick	al tapere mess ≥ (d joist en	ds.	
õ	sive of bi ed by she	ridging jo ear capac	Exclusive of bridging joist and tapered ends ntrolled by shear capacity.	spered er	ids. +C	apacity a	t elastic	deflectior	+Capacity at elastic deflection = $\ell_n/360$.	60.	
		PROPERTIES	RTIES I	FOR DE	DESIGN (CONCRETE	CONC		.41 CF/8	CF/SF) ⁽⁴⁾		
POSITIVE MOMENT STEEL (SQ. N.)	.40	.51	.62	.75	88.	1.04	1.20	1.39	1.58	1 79	
PERCENT	60.	.12	.15	.18	.21	.25	.29	34	38	43	
DEPTH, D IN.	11.75	11.69	11.69	11.63	11.63	11.56	11.56	11.50	11.50	11.44	
+ICR/IGR	.162	200	239	080	303	360	110	VED	600	673	

	4,000 psi 60,000 psi			E C	Defl.	Coeff.	ĉ	-	_	8/17	996	1.185	1.441	1 736	-	2.0/3	2.458	2.894	3.386	3.938	AGEA		5.240	6.001		pans,					4		4		0.00	(0
	= 4,(= 60,		# 2	8.5	# 2	AC T	0+. I	** 20	570*	342	314*	289*	429	381 248*	340	231*	215*	2/2	244	219	166*	171	156*	143		end s			-		1.61	-			.18	-
-	f. fy		# 4	2	14 U		ol.1	*10.11	508	334	307*	284*	343 263*	303	269	221*	212*	189	168	0 176*	197	30	118	105	ands	.5 for	/360.			1.03	1.25	11.8	.268		.15	
	(PSF)	Depth	# 4	8.5	# 4		MITEDIOD CDAN	VILLIN	404	351	301*	268	235	0	0	182	160	141	123	0	0 9	30	82	71 0	sioi pa	0,118	on = (,	SF) (4)	1		1.03	11.8	.232	ŭ	12	11.7
5	(2) LOAD	13.0* Total Depth		11.5	# 4		-	100	0	607	224	194	168	145	0	071	108	93.0	0 08	108	0	50	47	0	al tanel	kness 2	deflecti	1 CF/SF)		.63	./6	11.8	.185	00	9. 60.	11.8
	6" cc DSED	11	# 4	12	# 3		3	100	0	781	155	131	111	0 46	0	0 %	65	23.0	43 0	0 89	0				or sneci	ne (thick	elastic	ETE .41		. 60	. /3	11.8	.179	31	10.	11.8
	30" Forms + 6" Rib @ 36" cc. ⁽²⁾ FACTORED USABLE SUPERIMPOSED LOAD (PSF)	3.0" Top Slab		End	Defi.	Coeff.	(0)	1 000	000-1	1.204	1.569	1.926	2.342	2.820	0000	3.309	3.995	4.703	5.502	6.398	7 400	DODE-1	8.516	9.752	Inad is fo	Computation of deflection space provide the providence of the pro	+Capacity at elastic deflection = $\ell_n/360$	PROPERTIES FOR DESIGN (CONCRETE								
- 2	+ 6" I E SUF		# 5	10	9 # 0 # 0		-		478*	425	271*	248*	328* 228*	210*	256	227	180*	167*	156*	159	125	0	111	86 0	second	bove ho		IGN (G		1.12	80	11.7	.280	88	.21	11.6
7	30" Forms ED USABL	10" Deep Rib +	#5	12	#5	1 05	ENID CDAN	*210	404	351	263*	241*	221*	235 204*	207	0	160	141	0 124	108	0 8	30	82	11	ble 8-1.	uired a	red end	R DES		.93	1.14	11.7	.246	76	.18	11.6
	30" 30"		# 4	9.5	بة 10 14		DO.	300*	322	0	241	209	182	158	0	0	119	103	0 68	0 20	0 5	30	54	45	see Tal	not req	nd tape	ES FO	1	.76	.54	11.8	.214	Ca	.15	11.7
	FACTO		# 4	12	# 4 7 4		201	190	0	14	184	157	135	115	0 8	0 0	83	20	28 0	48 0	0				perties,	ction is ns).	joists a acity.	PERTI		. 60	.43	11.8	.179	51	12	11.7
	8 S		# 4	12	# 4 # 4		2	100	0	0	127	106	88	73	0	20	48	5							ion pro	of defle	ridging	PRO	8	. 60	. 43	11.8	.179	40	60.	11.8
10000	JOIST: JOIST: SPAN		Size	9)	* *		NN						-												For gross section properties, see Table 8-1. First load is for standard source ioist ends:	for intel	Exclusive of bridging joists and tapered ends. ntrolled by shear capacity.		DMENT	(NI .)S	(TAPERED)	, IN.	H	CO INT	- IN - 20	H. IN.
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STANDARD ONE-WAY JOISTS (1) MULTIPLE SPANS		TOP	BAHS	BOTTOM	Steel (nsf)	CI FAR SDAN	171.01	10.11	0-01	19'-0"	20'-0"	21'-0"	22'-0"	10 100	0-62	24'-0"	25'-0"	26'-0"	27'-0"	"U"	2	29'-0"	30-0	(1) For grc (2) First lo		 (4) Exclusive of bridging joist *Controlled by shear capacity 		NEGATIVE MOMENT	STEEL AREA (SQ. IN.) STEEL & A INICODA D	STEEL % (UNIFURM) (TAPERED)	EFF. DEPTH, IN.	- ICR/IGR	POSITIVE MOMENT	STEEL %	EFE. DEPTH, IN.

A typical floor plan is shown below. All of the members are the same size, but hold different loads. Their size is 12.5" x 24". Further calculations may be found in the Appendix in Figures 16-19.

4.3 Evaluation of the System

This evaluation will highlight the pros and cons of the One way concrete joist system.

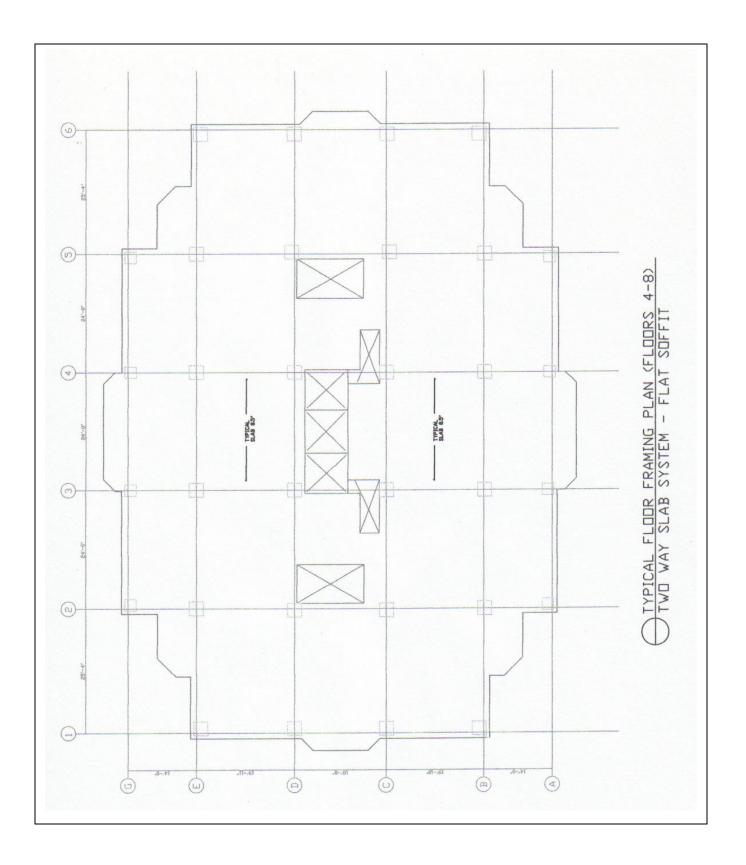
One Way Concrete Joist System Pros

- o Easy to construct
- Shallow System
- With a drop ceiling, allows for a large plenum space beneath members
- Inherently fire resistant
- o Less dead load

One Way Concrete Joist System Cons

- o May take longer to construct
- MEP would have to drill holes or go beneath the members
- Many atypical corners and widths
- o Atypical spaces may increase costs

5. Alternative System 3: Two Way Flat Plate System


5.1 The System

The two-way flat plate system that I analyzed had no drop panels or beams. I chose strictly a flat slab supported by columns. This was to increase the amount of plenum space and decrease the amount of obstructions for the MEP systems. 'The two-way flat plate is one of the most efficient structural systems for economy.'³ The formwork for the system is very easy, with little oddities, even in atypical spans and protrusions, as is the case with Vickroy Hall. I used the CRSI Handbook tables for ease of design.

5.2 Analysis

The system I designed ended up being an 8.5" thick slab supported by columns in the range of 23 inches square to 34 inches square. This worked well to stay within the current floor to floor heights and even allowed an increase in the plenum space. A chart with a summary of all of the values from the CRSI Handbook, along with the typical floor plan is shown below. For the values in context, please refer to the Appendix, Figures 3-4. For further calculations, please refer to the Appendix, Figures 20-21.

Panel	Column Lines	Span	Panel Type	Ratio (l_2/l_1)
Typical Panel 1	(2-3,G-E)(4-5,G-E)	14'x24'	С	1.71
	(2-3,a-B)(4-5, A-B)			
Typical Panel 2	(3-4,E-G)(3-4,A-B)	14'x24'	IC	1.71
Typical Panel 3	(1-2,D-E)(5-6, D-E)	26'x19'	С	1.28
	(1-2,B-C)(5-6, B-C)			
Typical Panel 4	(D-E, 2-5)(B-C, 2-5)	24'x20'	IC	1.2
Typical Panel 5	(C-D,1-2)(C-D, 5-6)	26'x19'	С	1.36

				R	Reinforcen	nent		
Panel	Col Size	Slab t	Colu	umn Stri	р	Middl	e Strip	Steel
			Top Ext +	Bott	Top Int	Bot	Тор	(psf)
Typical Panel 1	28"x28"	8.5"	12-#5	11-#6	14-#7	10-#5	12-#4	3.23
Typical Panel 2	23"x23"	8.5"	-	10-#5	13-#7	14-#4	12-#4	3.11
Typical Panel 3	34"x34"	8.5"	15-#5	10-#7	13-#8	12-#5	10-#5	3.70
Typical Panel 4	23"x23"	8.5"	-	10-#5	13-#7	13-#4	12-#4	3.11
Typical Panel 5	34"x34"	8.5"	15-#5	10-#7	13-#8	12-#5	10-#5	3.70

5.3 Evaluation of the System

This evaluation will highlight the pros and cons of the Two-Way flat plate system with no drop panels or beams.

Two-Way Flat Plate System Pros

- Ease of construction
- Allows for large plenum space
- o Economical
- Inherently fire resistant
- Shallow system

Two-Way Flat Plate System Cons

- o Larger Columns
- o Cantilevered sections
- o Must design for shear
- Punching shear is typical
- o If current column lines are kept, there
- o will be eccentricities in the columns

6. Alternative System 4: Hollow Core Planks on Concrete Beams and Masonry Bearing Walls

6.1 The System

Hollow core planking is a type of precast concrete system that can be constructed a multitude of ways. The planks are cast in long lengths and cut to size to accommodate the project. The hollow cores can be filled with grout for added strength if need be. A topping slab may also be added for either structural purposes or strictly leveling. For this system, the precast will be supported by concrete beams and/or masonry bearing walls. The system I analyzed has a two-inch topping for both structural integrity and to make sure the floor is level. The Nitterhouse Concrete Products website provided free specifications and details for their typical planks and coinciding connections.

6.2 Analysis

From the Nitterhouse Concrete Products site, I chose the J952 planking system. The full PDF of the specifications can be found in the Appendix as Figure 2. The planks are four stranded 8" x 4' wide members. The weight of each plank is 82.5 psf or 330 plf. The strength of the member is 3000 psi when it arrives on site, and the 28-day strength is 5000 psi. The allowable loads are located on the bottom of the PDF from Nitterhouse Concrete Products.

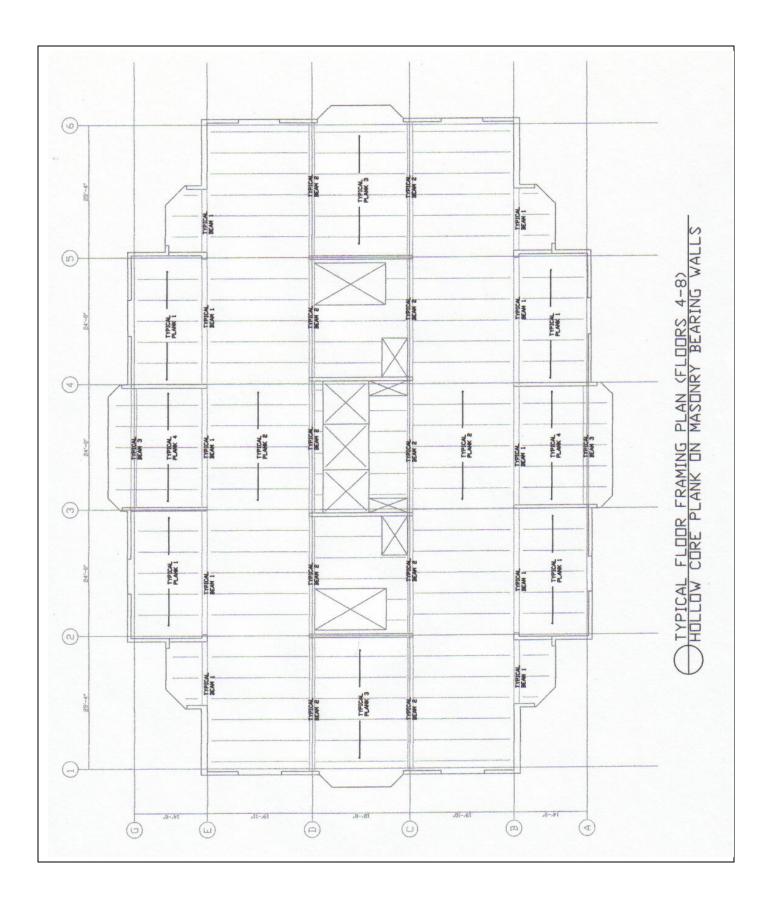
Following the original floor plan, the columns were kept the same and the orientation of the planks followed that of the original beams for simplicity at the cantilevered and protruding sections. There were four typical planks. The planks were assumed to be simply supported with minor tack welds to the supporting members. The sections where planks were not designed for were atypical, such as around the core of the building, which houses the elevator shafts and stairwells. Such analysis was beyond the scope of this report. The typical supporting members were also designed for. However, they were not designed as fixed-fixed members as in the original system, but simply supported.

Other Assumptions:

- Deflection of the planks is calculated into the allowable loads given in the Nitterhouse Concrete Products specifications
- Since there is topping on the planks, the planks will not serve as point loads on the supporting members, but as a distributed load along the length of the member.
- Supporting members are unbraced except for necessary tack welds along the length as defined by the precastor
- Only gravity was accounted for in the floor system

After reviewing the typical architectural floor plan, I determined the places where masonry bearing walls could be placed without ruining the architectural beauty of the building. (see Appendix Figure 5 for Typical Architectural Floor Plan) The reason I chose these spots were because of the large amount of empty space between the columns that were not being used in the current system. Therefore, if it was not being used in the current system, it could be used in the alternative system. The plank layout is the same as the alternative system 1 due to logistics (See framing below for bearing walls and plank layout). For further calculations, please refer to Figure 22 in the Appendix.

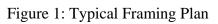
6.3 Evaluation of the System

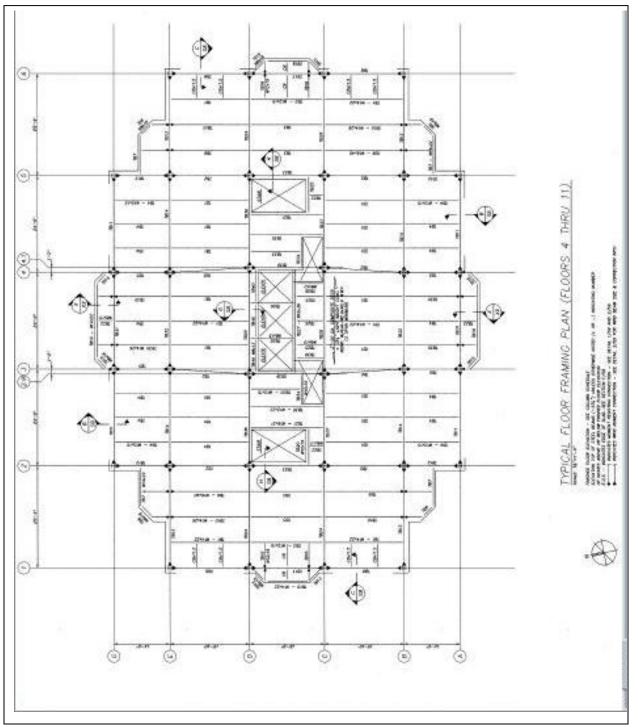

This evaluation will highlight the pros and cons of the precast hollow core plank on structural steel members system.

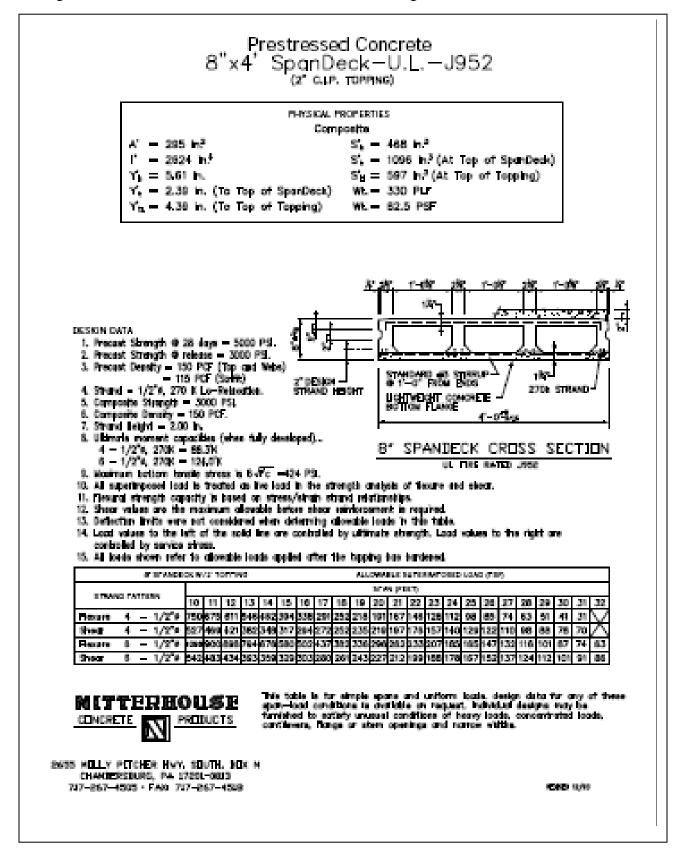
Hollow Core System Pros

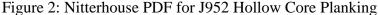
- Durable system¹
- Inherently Fire Resistant¹
- \circ Fast Installation¹
- \circ Noise Attenuation¹
- Less expensive
- Less empty space between columns
- Bearing walls take the place of columns

Hollow Core System Cons


- Cannot change column spacing due to façade
- Much cutting will be needed to size to the original column spacing as planks come in 4' sections
- o While spanning in shorter direction
 - Easier to construct but more pieces
- o Cantilevered sections
- Planks must bear on beams which in turn bear on bearing walls




7. Overall Evaluation


System	Current	Hollow Core on Steel	One-Way Joist	2-Way Flat Plate	Hollow Core on Masonry
Features	 Moderate member sizes Easy Constructability Withstood test of time 	 Light system Easy to construct Fire Resistant 	 Light system Reusable formwork saves money Fire Resistant 	 Easiest to construct Largest floor to floor height Fire Resistant 	 ○ Less empty spaces ○ Easy to construct ○ Fire Resistant
Cost	 ○ Moment frames are expensive 	 Atypical spaces may prove to be pricey 	 Atypical spaces may prove to be pricey 	 Atypical spaces may prove to be pricey 	 Atypical spaces may prove to be pricey
Least Depth	Moderate Depth	Largest of 5	Moderate Depth	Least Depth	2 nd Largest
Further Evaluation	Yes	Yes	Yes	Yes	Maybe – Placement of bearing walls may become and issue architecturally

Appendix

								197				
) psi			nel	IC	s.f.	2.26 2.46 2.46 3.30 3.45 3.70	2.33 2.84 3.28 3.78 3.78 3.78 3.78 3.78	2.41 2.68 3.11 3.36 3.36 3.36 3.36 3.36 3.36 3.37 3.36 3.37 3.36 3.37 3.37	3.96	2.43 2.81 3.24 3.53 3.53 3.53 4.13 4.13	2.954 2.955 3.43 3.72 4.13 4.64 4.64	
4,000 psi		Steel (psf)	Location of Panel	IE	c.f.	225 225 272 272 272 293 341 341 341	2.33 2.59 2.81 3.19 3.74 3.74	2241 266 330 330 330 330 366	3.92 4.02	2.42 2.78 3.20 3.49 4.09 4.09	2.552 2.955 3.42 3.68 4.04 4.28 4.55	
$\mathbf{f}_{c}' = 4$		S	Local	-	0.708	224 224 2268 2290 3.28 3.36 3.36 3.36	2.33 2.55 2.79 3.16 3.39 3.69 3.69 3.69 3.69 3.69	2.42 2.64 3.08 3.25 3.63	3.87	22.40 2.76 3.15 3.44 4.04 4.04	2.51 2.95 3.41 3.64 3.96 4.24 4.24	
	+	Otaio	dine	Bottom		11-#4 11-#4 11-#4 11-#4 11-#4 11-#4	11-#4 11-#4 11-#4 11-#4 12-#4 12-#4	12-#4 12-#4 12-#4 11-#4 11-#4	13-# 4 13-# 4	12-#4 12-#4 12-#4 13-#4 9-#5 9-#5	12-#4 12-#4 13-#4 13-#4 110-#5 10-#5	
DAN	Rainforcion Bare	Middlo Chio	Innim	Top	SLAB	11-#4 11-#4 11-#4 11-#4 11-#4 8-#5 13-#4	12-#4 12-#4 12-#4 13-#4 13-#4 13-#5	13-# 4 13-# 4 13-# 4 13-# 4 13-# 4	14-#4	13-# 4 13-# 4 13-# 4 16-# 4 16-# 4	13-#4 13-#4 14-#4 10-#5 10-#5 110-#5 110-#5 112-#5	
aola	Reinforc	Chrin	dino	Bottom	OF	$\begin{array}{c} 11-\# \ 4\\ 11-\# \ 4\\ 8-\# \ 5\\ 13-\# \ 4\\ 10-\# \ 5\\ 10-\# \ 5\\ 16-\# \ 4\end{array}$	11-#4 12-#4 13-#4 10-#5 110-#5 11-#5	12-#4 13-#4 10-#5 11-#5	12#5	12-# 4 14-# 4 11-# 5 9-# 6 20-# 4 10-# 6	13#4 116-#4 12-#5 13#5 10-#6 22-#4 11-#6	
FINITE		Column		Top	THICKNESS	13-# 5 13-# 6 11-# 7 13-# 7 13-# 7 13-# 7 11-# 8	11-# 6 13-# 6 11-# 7 13-# 7 11-# 8 12-# 8	12-#6 20-#5 13-#7 14-#7 12-#8	13-# 8	13-#6 12-#7 14-#7 12-#8 13-#8 13-#8 14-#8	15-# 6 14-# 7 13-# 8 13-# 8 14-# 8 15-# 8 15-# 8	
SOLIARE INTERIOR DANIEL	()	Min.	<u>8</u> 8	(in.)	AL THIC	40 33 33 33 33 33 40	3325515 33333333333333333333333333333333	33 ¹⁸ 13	54	52 43 33 6 0 1 1 2 1 5 2 6 0 2 1 5 2 6 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	23 28 28 39 60 60 60 60	
55	(3)		Load	(psf	. = TOTAL	50 250 350 350 350	200 200 200 200 200 200 200 200 200 200	2200 2200 2200 2200 2200 2200 2200 220	350	302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 302202220 30220220 302202020 302202020 3022000 3022000 3022000 302000 302000 302000 302000 302000 302000 302000 302000 302000 302000 302000 302000 302000 302000 30200000000	300220022000 30022000000000000000000000	
	(2)	2	CC.	(ii)	8.5 in.	8888888	ននេនននេនន	55 <mark>58</mark> 55	24	*****	8888888	
			anel	2	c.f./s.f.	2.17 2.33 3.06 3.41 3.70 3.70	2.17 2.54 3.40 3.68 4.03 4.30	2.24 2.67 3.53 3.53 4.00	4.20	2.36 2.35 3.35 3.35 4.19 4.54 4.54	2.56 3.10 4.07 4.77 4.99	
_	End Panel	Steel (psf)	Location of Panel	2	0.708 c	2.19 2.71 3.360 3.360 3.378 3.78	2.24 2.87 3.34 3.36 3.36 4.16	2.33 2.67 3.16 3.41 3.88	4.09	2.41 2.89 3.73 4.05 4.67	2.54 2.96 3.58 3.92 4.57 4.57 4.57	
PANEI			201			2.18 2.41 2.69 3.32 3.35 3.75	2222 254 331 3.84 3.84 3.84	2.33 2.64 3.13 3.82 3.82	4.02	2.41 2.85 3.68 3.68 4.03 4.03 4.61 4.61	2.51 2.51 3.55 3.30 4.77 4.77	
EDGE PANEI		Each Middle Strip	Top			11+#4 11-#4 11-#4 11-#4 13-#4 9-#5 9-#5	12-#4 12-#4 12-#4 12-#4 9-#5 14-#4 10-#5	13-#4 13-#4 12-#4 9-#5 10-#5	10-# 5 16-# 4	13 + 4 13 + 4 13 + 4 10 + 5 10 + 5 11 + 5 12 + 5	13#4 13#4 10#5 11#5 12#5 13#5	
ARE E	Bars	Middl		Bottom		11-#4 11-#4 11-#4 13-#44 14-#4 10-#5 16-#4	11-4 11-4 13-4 10-4	12-#4 13-#4 10-#5 12-#5	9-#6	12-#4 9-#5 16-#4 12-#5 19-#4 20-#4 10-#6	13#4 10#5 12#5 13#5 10#6 11#6	
SQUARE	Reinforcing Ba	a	Top	E		14-#5 12-#6 11-#7 12-#7 13-#7 113-#7 11-#8 112-#8	11-#6 11-#7 12-#7 11-#8 12-#8 13-#8 13-#8	17-#5 15-#6 14-#7 12-#8 13-#8	14-# 8	14-# 6 13-# 7 12-# 8 13-# 8 13-# 8 14-# 8 16-# 8 16-# 8	16-# 6 14-# 7 13-# 8 14-# 8 16-# 8 16-# 8 16-# 8	
	Rein	Each Column Strip		POLIOM		8+#5 9+#6 9+#6 10+#6 11-#6 10-#6 10-#6 10-#5	9+5 9+6 9+6 10+7 10+7 10+7	10-#5 10-#5 10-#7	10-# / 14-# 6	17-#4 10-#6 16-#5 110-#7 14-#6 9-#8 9-#8	13.#5 23.#4 10.#7 14.#6 15.#6 10.#8 10.#8	
		ö	Top			11-#45 12-#46 14-#44 16-#46 12-#52 19-#44 19-#44 20-#43	12-#45 14-#47 16-#46 12-#55 13-#53 13-#53 22-#42	13-#4 5 16-#4 5 12-#5 4 20-#4 6 222-#4 4	st LO	$15 \pm 4 = 0$ $12 \pm 5 = 5$ $15 \pm 5 = 5$ $15 \pm 5 = 3$ $16 \pm 5 = 2$ $13 \pm 6 = 1$ $13 \pm 6 = 1$	16#4 9 19#4 7 15#55 16#55 16#55 13#6 1 13#6 1 19#5 1	
	oments	1st int	-		1		190 267 332 352 332 352 352 352 352 352 352 352	214 1 259 1 339 2 365 2 365 2 259 1 365 2 2 365 2 2 365 2 2 2 365 2 2 3		240 236 336 400 423 438 438 438	268 11 323 11 373 11 408 11 436 20 457 11 475 11 10 10 10	
	Panel Moments	₩ tu	(ft-kin)		AB	124 151 175 220 237 237 250 250	141 171 171 2246 246 274 274	159 251 251 251 251 251 251 251 251 251 251	300	178 215 249 276 314 326 326	199 277 303 324 353 340 353	
ADS)	Total	Ext.	(ft-kip)	- 2	5 -		71 86 99 112 112 131 131 137	112 126 136 136 136	£9 <u>5</u>	88 1258 1557 163	170 170 170	
SHEARHEADS	(1)	Min. Square Column	J.	INIECO	- NNEOO	0.737 0.737 0.658 0.680 0.680 0.611 0.611 0.611	0.752 0.739 0.686 0.675 0.675 0.675 0.645 0.645 0.609	0.721 0.666 0.657 0.634 0.610	0.607	0.649 0.649 0.649 0.609 0.609 0.609 0.608 0.607	0.728 0.665 0.665 0.619 0.608 0.606 0.606	
			(in.)	TOTAL THICKNESS		33 33 26 23 19 33 33 30 26 23 19 33 30 26 23 19	45 33 255 17 45 39 29	¥%33 <mark>8</mark> 54	2 2 2	22843382	64 44 48 58 53 58 59 59 59 59 59 59 59 59 59 59 59 59 59	
ПОН	Factored Superim-	posed	(psf)	1		333226225	328828829292	2200 <mark>22</mark> 002	320	300 3200 3200 3200 3200 3200 3200 3200	200 300 350 350 350 350 350 350 350 350 3	
(WITHO	SPAN CC.	$\ell_1 = \ell_2$	(11)	8.5 in	5 0	8888888	******	aa <mark>a</mark> aaa	24	8888888	8888888	

Figure 3: Flat Plate System from CRSI

									+9+	
ars		G	Q	s.f.	1.76 1.97 2.07 2.15 2.15 2.15 2.15	1.88 2.00 2.24 2.50 2.50 2.50 2.70	2.01 2.01 2.01 2.01 2.05 2.01 2.05 2.01 2.05 2.01 2.01 2.01 2.01 2.01	2.02 2.16 2.33 2.67 3.08 3.08 3.08	2.01 2.17 2.71 2.71 2.71 3.09 3.26 3.26	
4,000 psi e 60 Bars		Steel (psf) Location of Panel	E	667 c.f./s	1.76 1.86 1.95 2.12 2.45 2.45	1.87 2.00 2.208 2.22 2.47 2.47 2.67	1.85 2.20 2.24 2.250 2.265 2.91	2.01 2.14 2.33 2.64 2.96 3.07 3.07	2.01 2.16 2.67 2.67 3.03 3.18 3.18	
r _c = Grade		St	-	0.66	1.76 1.86 1.93 2.04 2.21 2.43	1.85 2.00 2.20 2.20 2.24 2.64	1.84 1.98 2.22 2.87 2.87 2.87	2.00 2.13 2.45 2.45 2.62 2.96 3.06	2.01 2.14 2.63 2.63 3.11 3.11	
~		g Bars Middle Strip	Bottom		7-#4 7-#4 7-#4 7-#4 7-#4 7-#4	$8^{+}_{+}_{+}_{+}_{+}_{+}_{+}_{+}_{+}_{+}_$	8-#4 8-#4 8-#4 8-#4 8-#4 8-#4	9-#4 9-#4 9-#4 9-#4 9-#4 9-#4	9-#4 9-#4 9-#4 9-#4 9-#4 9-#4 9-#4	
PANE	1g Bars		Top	~	8 - # 4 8 - # 4	$\begin{array}{c} 9.44\\ 9.44\\ 9.44\\ 9.44\\ 9.44\\ 9.44\\ 9.44\\ 9.44\end{array}$	$\begin{array}{c} 9 + \# 4 \\ 9 - \# 4 \\ 9 - \# 4 \\ 9 - \# 4 \\ 9 - \# 4 \\ 9 - \# 4 \\ 9 - \# 4 \end{array}$	10-# 4 10-# 4 10-# 4 10-# 4 10-# 4 10-# 4 10-# 4	10-# 4 10-# 4 10-# 4 10-# 4 10-# 4 10-# 4	
RIOR	Reinforcing Bars	Strip	Bottom	OF SLAB	7-#4 7-#4 7-#4 7-#4 7-#4 8-#4	8-#4 8-#4 8-#4 8-#4 8-#4 9-#4 9-#4	8-#4 8-#4 8-#4 8-#4 9-#4 10-#4 7-#5	9-#4 9-#4 9-#4 9-#4 10-#4 11-#4 8-#5	9-#4 9-#4 11-#4 8-#5 13-#4 13-#4	
INTE		Column Strip	Top		8-#4 8-#4 110-#4 13.#4 14-#4 16.#4 12-#5	9-#4 9-#4 113-#4 110-#5 117-#4 9-#6 10-#6	11-#4 9-#5 16-#4 12-#5 110-#6 9-#7	13-# 4 16-# 4 10-# 6 10-# 7 10-# 7	10-#5 12-#5 12-#6 12-#6 10-#7 20-#5 15-#6	
SQUARE INTERIOR PANEI	(E)	Min.	(in.)	. THICKNESS	10 14 16 19 19 19 10 10 10	208/16/10 208/16/10	2304164100 23234641000	273 273 273 273 273 273 273 273 273 273	10 19 28 33 28 33 28 33 28	
SQ	(3)		Load (psf	TOTAL	350 2200 200 200 200 200 200 200 200 200	350 350 350 350 350 350 350 350 350 350	50 100 250 350 350	50 250 350 350 350 350	32000000000000000000000000000000000000	
	(2)	Span	CC. (ff)	8 in. =	888888888 8	11111111	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6161666 6166666 6166666 616666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 6166666 61666666	ຂຂ <mark>ຂ</mark> ຂຂຂ	
		nel	C	c.f./s.f.	1.76 1.81 1.81 2.02 2.12 2.30 2.41 2.41	1.86 2.19 2.19 2.55 2.55 2.53 2.53	1.80 1.94 2.25 2.51 3.03 3.03	1.93 2.16 3.02 3.32 3.32	1.92 2.12 2.73 3.01 3.59 3.59	
	End Panel	End Fallel Steel (psf) Location of Panel E E EC	EC	0.667 c	1.75 1.82 2.01 2.13 2.13 2.13 2.13 2.46	1.87 1.87 2.07 2.21 2.21 2.21 2.49 2.67	1.83 2.10 2.29 2.50 2.91 2.91	1.97 2.10 2.29 2.71 2.98 3.22	1.97 2.18 2.41 2.66 3.00 3.20 3.40	
ANEL			E		1.75 1.80 1.88 1.99 2.10 2.29 2.29	1.87 2.05 2.18 2.18 2.28 2.28 2.28 2.26	1.83 1.96 2.27 2.88 2.88 2.88	1.96 2.28 2.28 2.28 3.20 3.20	1.96 2.17 2.42 2.64 3.33 3.33	
EDGE PANEI		Heinforcing Bars h Each Strip Middle S	Top Int.		8 + 4 4 8 - 4 4 4	9-#4 9-#4 9-#4 9-#4 9-#4 9-#4 4 4 4 4 4	9-#4 9-#4 9-#4 9-#4 9-#4 9-#4 9-#4	10-# 4 10-# 4 10-# 4 10-# 4 10-# 4 10-# 4	10-#4 10-#4 10-#4 10-#4 11-#4 11-#4 11-#4	
	S		Bottom		7-#4 7-#4 7-#4 7-#4 7-#4 7-#4 8-#4 8-#4	8-#4 8-#4 8-#4 8-#4 8-#4 9-#4 9-#4	8-#4 8-#4 8-#4 8-#4 9-#4 10-#4	9-#4 9-#4 9-#4 10-#4 11-#4 11-#4	9-#4 9-#4 10-#4 10-#4 13-#5 13-#4 5	
SQUARE	orcing Ba		Top Int.		8-#4 10-#4 8-#5 9-#5 9-#6 9-#6	10-# 4 12-# 4 11-# 5 11-# 5 10-# 6 11-# 6 11-# 6	12-# 4 10-# 5 11-# 5 13-# 5 11-# 6 10-# 7 10-# 7	14-# 4 11-# 5 11-# 6 12-# 6 20-# 5 20-# 5	10-# 7 11-# 6 11-# 7 11-# 7 11-# 7 110-# 8	
	Reint		Bottom		7-#4 7-#4 7-#4 8-#4 6-#5 10-#4 11-#4	8-#4 8-#4 9-#4 10-#4 7-#5 8-#5 13-#45	8-#4 9-#4 10-#4 8-#5 13-#4 11-#4	9-#4 10-#4 8-#5 9-#5 10-#5 12-#5	10-#4 8-#5 9-#6 9-#6 13-#5 13-#5	
			Top Ext. +		8-#41 8-#43 8-#42 8-#42 8-#42 9-#44 9-#44	9-#4 1 9-#4 2 9-#4 3 9-#4 3 9-#4 4 10-#4 3 110-#4 3 11-#4 3	9-#42 9-#42 9-#43 9-#43 10-#43 11-#42 11-#42 11-#42 13-#42	10-#4 2 10-#4 3 10-#4 3 11-#4 3 11-#4 4 13-#4 4 14-#4 3 10-#5 3	10-#4 3 10-#4 3 11-#4 4 13-#4 4 16-#4 2 11-#5 2 11-#5 2	
	nents	-M st. int.			61 104 1177 1130 1430	74 93 109 124 140 170	88 110 147 166 182 198	103 150 150 210 227 227	121 148 174 198 220 241 255	
	nel Mor	Panel Moments	+W Int	(ft-kip)		45 67 87 87 97 106	55 81 92 104 116 126	66 123 135 147	77 96 112 128 156 169	90 110 147 164 179 190
(SC	Total Pa	Fotal Pa	(ft-kip)	SLAB	538433323 544333233	6385246 638524 63852	33 48 61 68 61 73	38 56 73 84 84 84 84 84 84 84 84 84 84 84 84 84	45 55 65 82 82 95 95	
ARHEADS		lin. Square Column	A	OF	0.724 0.814 0.731 0.763 0.763 0.720 0.748 0.748	0.773 0.802 0.791 0.717 0.717 0.717 0.659	0.815 0.770 0.763 0.695 0.618 0.618 0.615	0.779 0.738 0.674 0.677 0.677 0.675 0.613 0.654	0.783 0.687 0.651 0.658 0.658 0.658 0.610 0.610	
	(1)	Min. So Colur	(in.)	THICKNESS	19 12 13 13 13 13 13 13 19 19 19 19 19 19 19 19 19 19 19 19 19	20 863110	332384230	58633085572 288533085572	33 58 53 <mark>50</mark> 11 13 33 58 53 50 11 13	
PL PL	Factored	posed	(pst)	TOTAL T	250 250 350 350 350 350 350 350 350 350 350 3	350 350 350 350 350 350 350 350 350 350	300 300 300 300 200 200 200 200 200 200	500 350 350 350 350 350 350 350 350 350	3500 3500 3500 3500 3500 3500 3500 3500	
FLAI (WITH(1-	Cols. Cols. $r_1 = \ell_2$	(tt)	8 in. = '	61 65 65 65 65 65 65 65 65 65 65 65 65 65	2222222	20000000000000000000000000000000000000	<u></u>	88888888	

Figure 4: Flat Plate System from CRSI

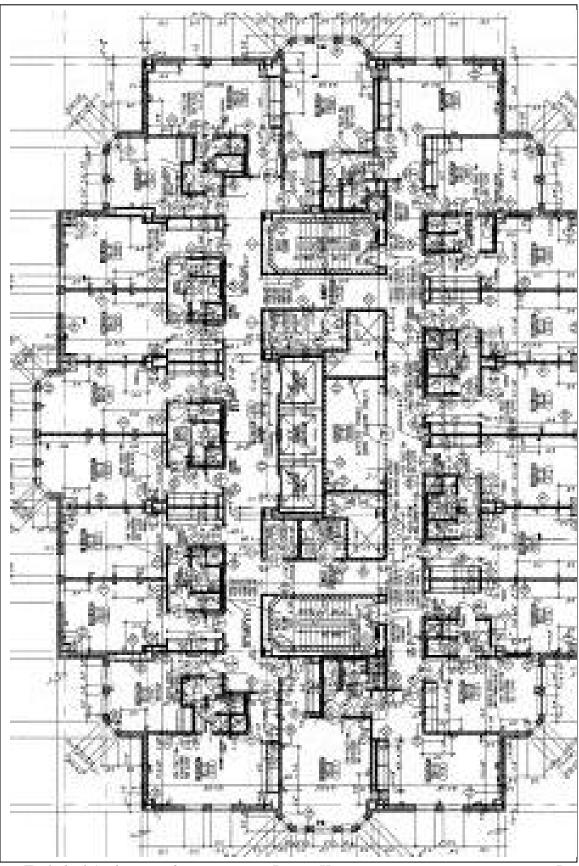


Figure 5: Typical Floor showing Architectural Elements

	TECHNICIAL REPORT 2 DONNA K	
Floor loading		
Dead Load		
deck	2psf	
reinforcing	2 psf	
	ret 38 psf = 140 pcf (3,25"/12"/")	
floor covering	1 osf	
Ceiling		
MEP	10 psf	
Collatera 1	5 psf	
UNNER	61 psf	
· partition load	not needed	
Live Load		
Dwelling Units	40 psf	
and and		
·Assume gravity loc * revision of Techni	cal Report 1	
*revision of Techni -floor loading -end conditions fo	or girders	
* revision of Techni - floor loading	or girders	
*revision of Techni -floor loading -end conditions for Wu = 1.2(61) + 1.6(4 Wu = 138 psf	or girders	
*revision of Techni -floor loading -end conditions for Wu = 1.2(61) + 1.6(4 Wu = 138 psf	or girders	
*revision of Techni -floor loading -end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138 psf <u>Typical Beaml</u> Span = 14-0" simply supported	or girders	
*revision of Techni -floor loading -end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138 psf <u>Typical Beaml</u> Span = 14-0" simply supported	or girders	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4 Wu = 138 psf <u>Typical Beam</u> Span = 14'-0" simply supported Tributary width = 6'	cal Report 1 or girders 10)	
*revision of Techni -floor loading -end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138 psf Typical Beam 1 Span = 14-0" simply supported	cal Report 1 or girders 10)	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4 Wu = 138 psf Typical Beam 1 Span = 14-0" Simply supported Tributary width = 6' Wu = 138 psf (6') = 8	cal Report 1 or girders 10) 18: pgg	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' Wu = 138psf(6') = 8 $Mmax = \frac{WL^2}{2} = 21'$	cal Report 1 or girders co) 18 pgg	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' Wu = 138psf(6') = 8 $Mmax = \frac{WL^2}{2} = 21'$	cal Report 1 or girders co) 18 pgg	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138 psf Typical Beam 1 Span = 14-0" Simply supported Tributary width = 6' Wu = 138 psf(6) = 8 $Mmax = \frac{WL^2}{8} = 21'$ $Vmax = \frac{WL^2}{8} = 21'$ $Vmax = \frac{WL^2}{8} = 10^{4}$	cal Report 1 or girders co) 18 pg k k k	
* revision of Techni - floor loading - end conditions for wu = 1.2(w1) + 1.6(4) wu = 1.38 psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' wu = 1.38 psf(6') = 8 $Mmax = \frac{wl^2}{8} = 21'$ $Vmax = \frac{wl^2}{8} = 10^{12}$ Amax = 4.360 = 5 Treg = 360(5) w	cal Report 1 or girders 18 pg $\frac{18 pg}{12}$ $\frac{18 pg}{12$	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4 Wu = 138 psf Typical Beam 1 Span = 14-0" Simply supported Tributary width = 6' Wu = 138 psf (6') = 8 Mmax = $\frac{Wl^2}{8} = 21'$ Vmax = $\frac{Wl^2}{8} = 0^{4}$ Amax = 4366 = § T Ireq = 360(5) W 384 E	cal Report 1 or girders co) 18 pg k k k	
* revision of Techni - floor loading - end conditions for wu = 1.2(w1) + 1.6(4) wu = 1.38 psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' wu = 1.38 psf(6') = 8 $Mmax = \frac{wl^2}{8} = 21'$ $Vmax = \frac{wl^2}{8} = 10^{12}$ Amax = 4.360 = 5 Treg = 360(5) w	cal Report 1 or girders 18 pg $\frac{18 pg}{12}$ $\frac{18 pg}{12$	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.16(4) Wu = 1.38 psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' Wu = 138 psf(6') = 8 $Mmax = \frac{WL^2}{2} = 21'$ $Vmax = \frac{WL^2}{2} = 21'$ $Vmax = \frac{WL^2}{2} = 0^{12}$ $Amax = \frac{V366}{3846} = \frac{8}{3}$ I Ireq = 360(5) W 3846 Ireq = 53 in ⁹	cal Report 1 or girders to) 18 plg $\frac{18 plg}{12^3} = \frac{1800(878)(14)^3(12)^2}{384(79000000)}$	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.6(4) Wu = 138 psf Typical Beam 1 Span = 14-0" Simply supported Tributary width = 6' Wu = 138 psf(6') = 8 $Mmax = \frac{Wl^2}{8} = 21'$ $Vmax = \frac{Wl^2}{8} = 0^{\kappa}$ $Amax = 4366 = \frac{2}{8}$ I Ireq = 360(5) W $384 \in$	cal Report 1 or girders to) 18 plg k^{4} k^{2}	
* revision of Techni - floor loading - end conditions for Wu = 1.2(61) + 1.16(4) Wu = 1.38 psf Typical Beam 1 Span = 14'-0" Simply supported Tributary width = 6' Wu = 138 psf(6') = 8 $Mmax = \frac{WL^2}{2} = 21'$ $Vmax = \frac{WL^2}{2} = 21'$ $Vmax = \frac{WL^2}{2} = 0^{12}$ $Amax = \frac{V366}{3846} = \frac{8}{3}$ I Ireq = 360(5) W 3846 Ireq = 53 in ⁹	cal Report 1 or girders to) 18 plg $\frac{18 plg}{12^3} = \frac{1800(878)(14)^3(12)^2}{384(79000000)}$	

Figure 6: Current System Calculations Page 1

CURRENT SYSTEM	TECHNICAL REPORT 2	DOWNA KENT	
	and the second second	and the second second second	1.4
Typical Beam 2			
Span 14'-0"			-
fixed-fixed			harden
Tributary width 6'			-
Wu= 828 plf			
$Mmax = \frac{We^2}{12} = 14^{1K}$			- terreterry
$V_{max} = \frac{W^2}{2} = 6^{\kappa}$			
$\Delta max = \frac{1}{1360} = \frac{1}{384EI}$			
Iraq = 3600013 = 3	360(828)(14)3(12)2		
384E	384 (2900000)		
Ireq = 11 in ⁴			
	68.9int > Ilint :. ok		
δm	p=60.0"K>14"K : ok		
٥V	n= 62K > 6K : 0K		
Typical Beam 3			
Span 19'-10"			
fixed-fixed			
TW = 6'			
Wu = 828 plb			
wa cropo			
Mmax = 271K			
Mimax - 21			
Vmax = 8K			
Amax:			
Ireq = 31 in +			
USE WIDXIS I= 68.	gint > slint . ok		
	ed'k y27'k .: ok		
prop= c	2K YBK : OK		
$\psi v n = 0$	02- 70 OF		
Typical Beam 4			
Span 19'-10"			
simply supported			
TW=6'			
WU = 828 plf			
Mmax = 411K			1 the
Vmax = 8K			
Amax =			
Imax = Ireg = 1800 we ³ =	150 int		Ver Level
Lreg - 1000 Wes = 384 E	100 111.		
OUTC			
	156in + > 150in + ok		
Φw	1p= 1101K > 411K ok		1 h
	In= 86.34>8K ok		
	the second product of the second s		

Figure 7: Current System Calculations Page 2

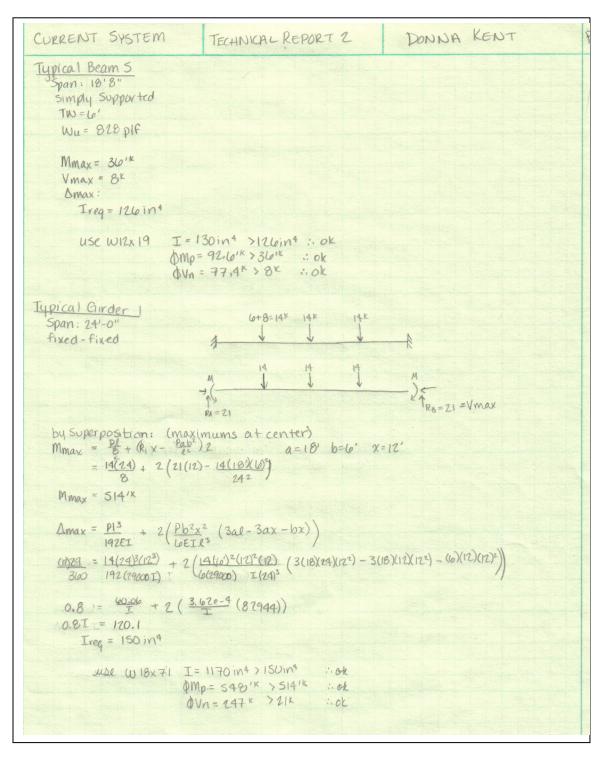


Figure 8: Current System Calculations Page 3

CURRENT SYSTEM	TECHNICA L REPOR	TZ DO	NNA KENT
Typical Gurder 2 Span 25'-4" fixed-fixed Vmax= 24 K	16× 16× 1 1 2 + 7.33 + 6 +	16× 3 6' × 6'	
	(maximums at middle point	r load ~ assump	tion)
$Mmax = \frac{2Pa_2^2 b_1}{r^3}$	$\frac{1}{k^2} + \left(R_1 \times - \frac{P_{a_1} b_1^2}{q^2} \right) + \frac{R_1 \times - P_0}{q^2}$	12 b3 02	
$= \frac{2(16)(13.3)}{25.33}$ Mmax = 617^{1K}	3) ² (12) ² + 24(13,33) - <u>16(18)(7,33)</u> 3 ³ 25,33 ²	2 + 24(12) - 106(1) 2	9,33)(6) ² 25,33 ²
$\frac{25.33(12)}{360} = \frac{160}{360}$	$\frac{P_{0.3}b_{2}^{2}}{6 \in I} + \frac{Pb_{1}^{2} x^{2}}{6 \in I} \left(3a, L - 3a, x - 3e = I \right)^{3}} \left(\frac{13}{6 \in I} \right)^{2} \left(13 \frac{2}{6 \circ I} \right)^{2} \left(12 \right)^{3} \left(\frac{12}{6} \right)^{3} + \frac{16(7 \cdot 33)^{2}(13 \frac{2}{6 \circ I})^{2}(12)}{60000} I \left(25 \cdot 33 \right)^{3} - \frac{16290000}{6290000} I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 33)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) - 36000 \right) I \left(25 \cdot 33 \right)^{3} \left(3(19, 32)(25, 33)(12^{2}) \right) $	(3(18)(25,33)(12) ² -	- 3(16)(13.33)(12 ²) - (7.33)(13.33)
$0.84 = \frac{0.046}{I}$ 0.84I = 86.95 I = 104 in	$+\frac{51.37}{I}+\frac{35.53}{I}$		
use w21x	73 I= 1600 > 104in ⁴ \$\phimp=645'K > 6171K \$\OVN=260K > 24K	i ok i ok i ok	
Summary Typkal Beam 1 2 3 4 5	Size WIOXIS WIOXIS WIOXIS WIZXZZ WIZXZZ WIZXI9		

Figure 9: Current System Calculations Page 4

HOLLOW-CORE PLANKING	TECHNICAL REPORT Z	DONNA KENT
wght: 330 per or 82.5	psf	
9 typical Plank sizes not including around eli ·3 simply supported : span ·1 with edge cantilever	evator shafts ns→ 141-0", 19'-10", 18:-8" :span: 14'-0" with 4' cantilev	er
4' widths, 8" depth, 2" C	IP concrete Topping	
·See Nitterhouse PDF in A ·assuming deflection is wit	ppendix thin limits on specifications	
Plank <u>1:</u> "Span 14'-0" using J95	52	
Weight = 4620 lbs		
Max deflection: $\frac{5We^4}{384EI}$ I from Niffer house = Strength = SOOOpsi Ec = $33We^{15}$ (Fic Ec = $4.07eb$ psi Ec = $4.07eb$ psi Ec = $4.07eb$ rsi	2624 ing where we = 14Spsf	
$\Delta = [5(148)(14)^{2}(12) = 0.012''$	5]/E384 (4.07eb)(2624)]	
$\begin{array}{l} \Delta = 2/360 \\ = 14(12)/560 \\ = 0.97 " > 0.012 \end{array}$	" :. ok	
Allowable superimposed + Flexure = 462 psl • Shear = 382 psf	load from Nitterhouse (Assum	ning 4 strand Pattern)
Load (from Technical	Report 1)	
TL= 1.2 D+ 1.6 L = 1. TL= 148 psg	2(70p56) + 116(40p5p)	
chath allows ble lands	are greater than imposed,	thought at

Figure 10: Hollow Core On Steel Support Calculations Page 1

Figure 11: Hollow Core Planks on Steel Supports Page 2

blow-Core Plank				NA KENT	
Plank Z:				I have be	
Span: 19'-10"	using J952	Wp= 330 plg	8" x4'	4 strand	
weight = 6545 lbs					
E= 4.07elepsi					
I=262914 from	1 J917 Nitterhou	ose PDF			
Max Deflection:					
Amax = 0.048					
$\Delta_{ailouable} = L/3k$ = 19'-10	20				
Lallauable = 0.0					
Smax < Dallow	able therefore, c	ok and a second second			
Allowable loads Flexure : 191 Shear : 219	psf \ 148	4 strand pattern ps6 therefi	n Dre ok		
ank 3:					
Span: 18'-8" usi	ng 1952 8	"x 4' 4 strand			
weight = 6160 lbs	5				
E=4.67e6 psi					
I = 2.624 in +					
Max Deflection:					
Smax = 0.037 "					
$\Delta allowable = (18) = 0.0$					
	wable :. ok				
Allowable Sugaring	mased lands a	+ 191 permina	4 strand	pattern	
Allowable Superin Flexure : 218 ps	e ino	if therefore o	de	La marti	

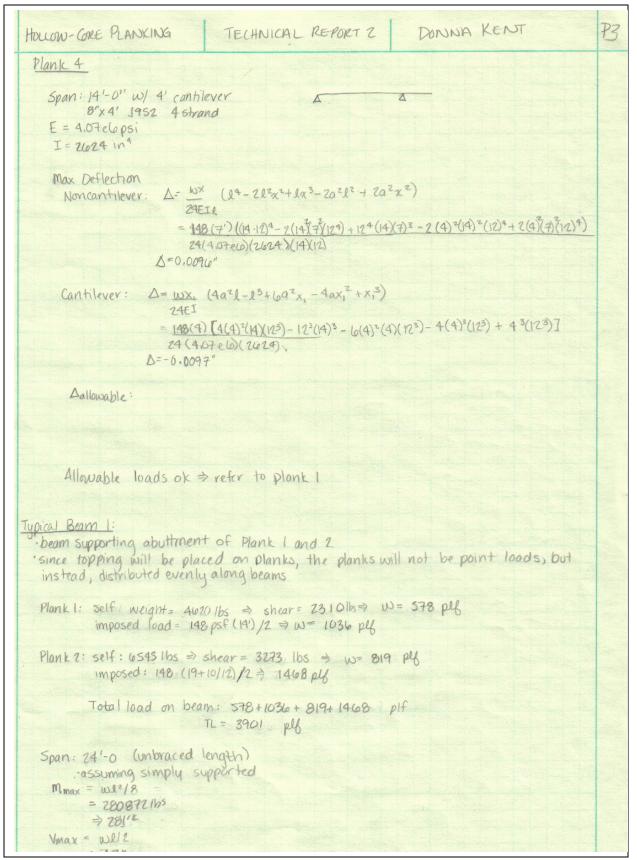


Figure 12: Hollow Core Planks on Steel Supports Page 3

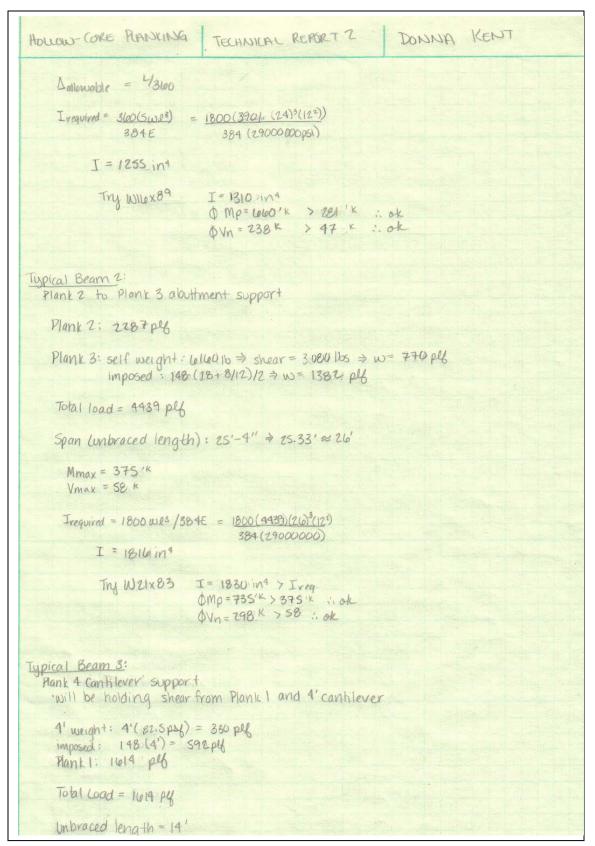


Figure 13: Hollow Core Planks on Steel Supports Page 4

Howow-Core PLANSKING	TECHNICAL REPORT 2	DONNA KENT	Ps
$Irequired = \frac{3(60 Swl^3)}{384 E}$	$= 3_{00}(5)(1014)(4)^{3}(12)^{2}$ $= 384(2902000)$		
$I = 103 \text{ in}^4$	551(2122500)		
	118 informingk		
φm au	118 517 4 > Ireq : ok p= 97.5"> 40" : ok = 66.1" K > 13" : ok		
4			
Deepest System:			
db d W 16x89 16.8 W 21x83 21.4	plank deopping total 8"2"26.8" 8"2"31.4"		
Current:			
W14×22 13.7" 2" W14×26 13.9" 2"			
WIGX40 16.0" 2" WIGX31 15.9" 2"	3.25" 21,25" 3.25" 21,15"		
Floor to Floor : 11'-4"			
·would lose at most 10 ·gain 10" for plenum	"floor to ceiling		
Girders			
Typical Girder 1: Plank I Area / Plank 4 Area	Ser		
Thibutany Area: 12° for Plank 1 12° for Plank 4 ~ (ca	nhilever goes straight to column	9	
Loading: Planks: 1025 psf + 191 X291 = 6012 peg	b psf = 250,5 , psf		
Span H'-0" "assume simply supporte	d		
$\frac{M_{Max}}{V_{Max}} = \frac{147}{2}^{\kappa}$			

Figure 14: Hollow Core Planks on Steel Supports Page 5

	ANKING TECHNICAL REPORT 2	positivitation
Max Deflection	n (I required)	
	$\frac{123}{384(29000000)} = \frac{360(5)(6012)(14)^{5}(12)^{2}}{384(29000000)}$	
Ireq = 384		
Try W14x	38 I= 385:119 ØMp= 229/K>1470 ^K ∴ oh ØVn= 118 ^K >42 ^K ∴ ok	
Typical Girder 2		
Plank 2 Area		
·same loading: la	1012 ptf.	
Span: 19'-10"		
Mmax = 296,1K Vmax = 60 K		
Amax (Ireg)		
I - 1092 in +		
use Wilex7	7 I = 1120 ing OMP = Slob 1K > 2961K :. ok OVn = 203 K > 60 .: ok	
ypical Gurder 3 Plank 3 Area		
·same loading: u ·span: 18'8"	oiz per	
Mmax = 2621K Vmax = 36 K Amax: Ireq = 910_in	4	
Mar W 12×106	I=933/114 > 1114 : 0k	
	OMP = 615/1K>2621K OVN = 2121K>56K: ok	

Figure 15: Hollow Core Planks on Steel Supports Page 6

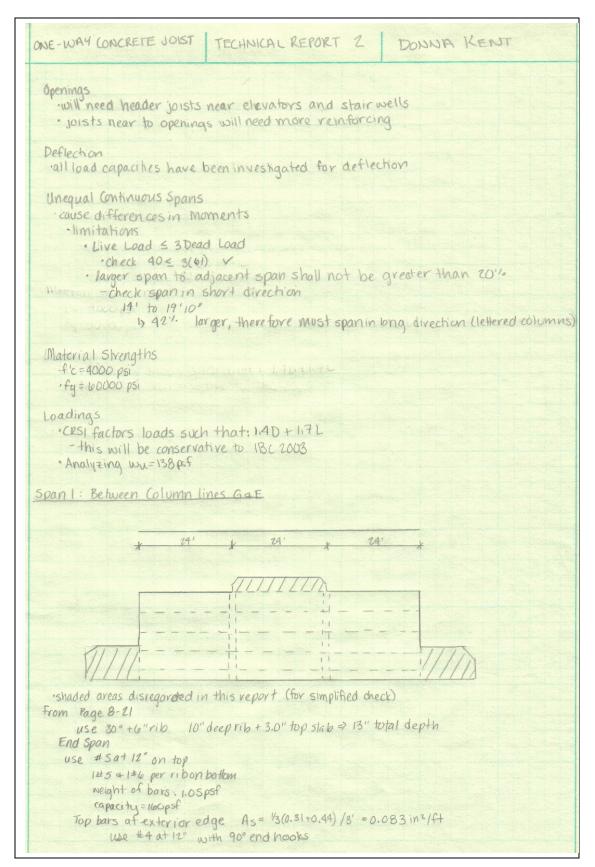


Figure 16: One-Way Concrete Joist System Page 1

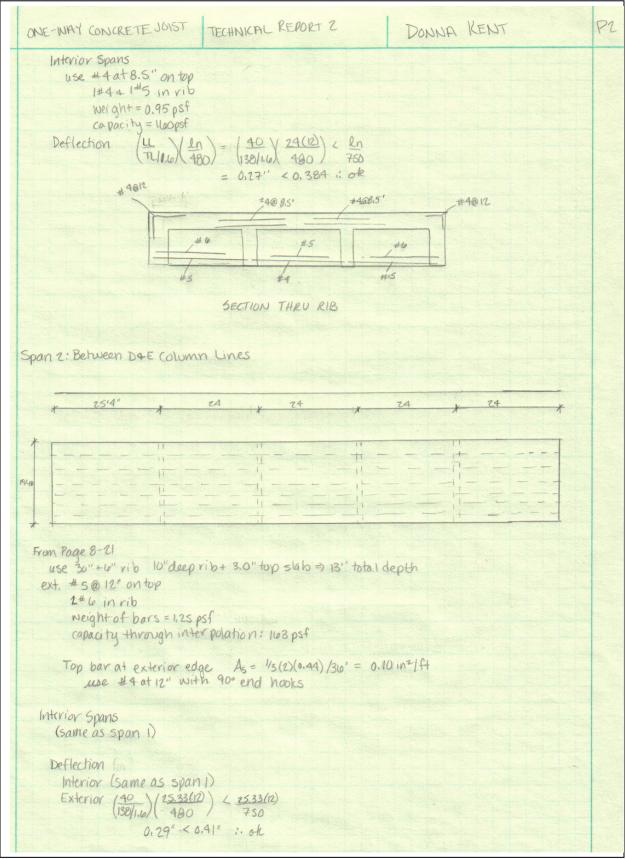
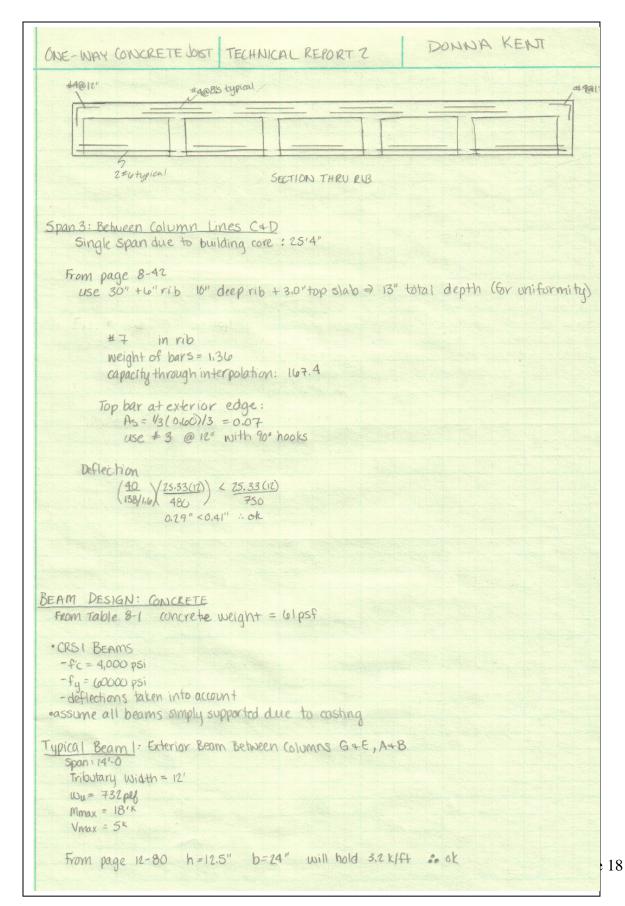



Figure 17: One-Way Concrete Joist System Page 2

Figure 18: One-Way Concrete Joist System Page 3

ALS WHILE ASSESSED TO THE REPORT 2 DUNNE VENT
ONE-WAY CONCRETE JOIST TECHNICAL REPORT 2 DONNA KENT
Typical Beam 2: Interior Beam Between column lines G&E, A+B Span=14-0" Tributary width=24' Wu=1464 py Mmax=36'k Vmax=10x
From Page 12-94 h=12.5" b=24" will hold 4.2 KIFt :. ok
Typical Beam 3: Exterior Beam between Column lines D+E, B+C Span = 19'-10" Tributary Width=12.17' Wu = 743 peg Mmax = 37'" Vmax = 8" From page 12-81 w/ In=20' h=12.5" b=24" will hold hue k/ft :+ 0k Typical Beam 4: Interior Beam between Column lines D+E, B+C Span = 19'-10" Tributary Width=24.17' Wu=1474 pif
$M_{max} = 73^{1K}$ $V_{max} = 15^{k}$
From Page 12-95 h=125" b=24" will hold 2.1 K[ff :: ok -from 20' span
Typical Beam 5: Exterior Beam between Column lines C+D Span=18'-8" Tributary width = 12,17' Wu= 793 plf Mmax = 33'K Vmax = 7 K
From Page 12-81 w/ ln=20' h=12.5' b=24" will hold 1.6 Klft :: ok

Figure 19: One-Way Concrete Joist System Page 4

2-WAY FLAT PLATE	TECHNICAL REPORT 2	DONNA KENT	1
CRSI		a har and a second of	
· Material Strengths			
-f'c = 4000 psi			
(Normal weight Concret	e)		
-fy=60,000 psi			
· Design Factors			
·1.4D+ 1.7 L			
- conservative for 1BC	1003		
· Requirements Satisfied			
- minimum thickness			
-deflection			
-crack control			
·Limitations			
-3 spans continuous in ca	ch direction V		- Subman
- Ratio lengths to width	not exceeding 2.0 V		- Andread -
-Successive spans not to	s differ more than 1/3 the sp	ian of longer v	
- Individual columns no	it to be offset more than 10'	1. ofspan V	- for a fair of the
- Live load < 2 Dead Loc	ad		
esign $w_u = 138 psf$ as determine	ed from current system Al	nalysis	
<u>Tupical Panel 1</u> : Column lin Span 14'-0" x 24'-0"	es (2-3, GTE); (4-5, G-E), (2-3, A-	B), (4-5,A-B)	
$l_2/l_1 = 1.71$			
Will use larger value. ·Square Edge Panel C	s due to large ratio		
minimum square colu	umn to hold 28x28", 8:5" slak	2	
Typical Panel 2: Column line	s (3-9, EG), (3-4, A-B)		
Span 14'-0" x 24'-0"			a hard and
interior panel, ac			- the second
$l_{1} l_{1} = 1,71$	and the second		
· use larger values due	to large ratio		
· Minimum square colum	in to hold 23" x 23", 8.5' slal	2	
Typical Panel 3: Column line Span 25'-4" x 19'-10"	es (1-2, DE), (5-6, DE), (1-2, BC), (5-6,80)	
Edge Panel, C			
$l_2/l_1 = 1.28$	ing due to closeness to 1.0		

Figure 20: Two-Way Flat Plate System Page 1

Figure 21: Two-Way Flat Plate System Page 2

2-WAY FLAT PLATE TEC	HNICAL REPORT 2	DONNA KENT	PZ
Col Strip Midd Top Ex + Bolt. Top Int Bolt 20' 11-#43 9#5 11-#6 9-#4 20' 15-#55 10#7 13-#8 12.#5	Top int C 10-#4 2.33		
·cannot really cut back o ·minimum square to hold: 3	1 steel, so use 26' vi 4"x34"	eintorcing	
Typical Panel 4: Between Column Span: 24' x 19'-10" >> 20' lzfl, = 1.2 Interior Panel, 1C compare reinforcing	lines (DE, 2-5) + (BC, 1	2-5)	
Col Strip Middle Ster To Top Bot Top Bot IC 20' 11-#6 9-# 9 10-#49-#4 2.4 24' 13-#7 10-#5 13#4, 12-#4 3.1			
use 24' reinforcing minimum oquare column t	> hold: 23" x 23", slab	=8,5"	
Typical Panel 5: Between Colum Span: 25'-4" × 18'-8" ⇒ 26 Iz/I; = 1.36 ⇒ use larc Exterior Panel, C iminimum square colum	er veinforcement,		

Figure 22: Hollow Core Planking On Masonry Bearing Walls and Concrete Beams

HULOW CORE PLANKING DUNNIA KENT PI TECHNICAL REPORTZ ON MASONKY + BEAMS * use plank design from other system BEAM DESIGN ·using designs from other system for loading Typical Beam 1 Span 24' Total 600 = 3036 plf Mmax = 2191K Vmax = 36 K From Page 12-25 use In=24', h=16", b=16" will hold 3.1 KIFt Typical Beam 2 Span: 26' Tota 1 Lood = 3174 p4 Mmax = 268 K Vmax=41 4 From page 12-25 use In=26', h=16", b=16" will hold 3,1 K/ft Typical Beam 3 Span 14' + 4' cantilever Motal Load = 1614 plf Mmax = 40 K Vmax=15K From page 12-50, use ln= 18, h=12", b=10"; will had 1.7 k/ft : ok Concrete Beams will bear on masonry bearing walls - did not design because it is the bearing system of the floor system